Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(9): 1106-1113, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37537356

RESUMO

Non-collinear antiferromagnets are an emerging family of spintronic materials because they not only possess the general advantages of antiferromagnets but also enable more advanced functionalities. Recently, in an intriguing non-collinear antiferromagnet Mn3Sn, where the octupole moment is defined as the collective magnetic order parameter, spin-orbit torque (SOT) switching has been achieved in seemingly the same protocol as in ferromagnets. Nevertheless, it is fundamentally important to explore the unknown octupole moment dynamics and contrast it with the magnetization vector of ferromagnets. Here we report a handedness anomaly in the SOT-driven dynamics of Mn3Sn: when spin current is injected, the octupole moment rotates in the opposite direction to the individual moments, leading to a SOT switching polarity distinct from ferromagnets. By using second-harmonic and d.c. magnetometry, we track the SOT effect onto the octupole moment during its rotation and reveal that the handedness anomaly stems from the interactions between the injected spin and the unique chiral-spin structure of Mn3Sn. We further establish the torque balancing equation of the magnetic octupole moment and quantify the SOT efficiency. Our finding provides a guideline for understanding and implementing the electrical manipulation of non-collinear antiferromagnets, which in nature differs from the well-established collinear magnets.

2.
Nat Nanotechnol ; 18(9): 1000-1004, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37264089

RESUMO

Advancing the development of spin-wave devices requires high-quality low-damping magnetic materials where magnon spin currents can efficiently propagate and effectively interact with local magnetic textures. Here we show that magnetic domain walls can modulate spin-wave transport in perpendicularly magnetized channels of Bi-doped yttrium iron garnet. Conversely, we demonstrate that the magnon spin current can drive domain-wall motion in the Bi-doped yttrium iron garnet channel device by means of magnon spin-transfer torque. The domain wall can be reliably moved over 15-20 µm distances at zero applied magnetic field by a magnon spin current excited by a radio-frequency pulse as short as 1 ns. The required energy for driving the domain-wall motion is orders of magnitude smaller than those reported for metallic systems. These results facilitate low-switching-energy magnonic devices and circuits where magnetic domains can be efficiently reconfigured by magnon spin currents flowing within magnetic channels.

3.
Phys Rev Lett ; 129(1): 017203, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841567

RESUMO

Injecting spin currents into antiferromagnets and realizing efficient spin-orbit-torque switching represents a challenging topic. Because of the diminishing magnetic susceptibility, current-induced antiferromagnetic dynamics remain poorly characterized, complicated by spurious effects. Here, by growing a thin film antiferromagnet, α-Fe_{2}O_{3}, along its nonbasal plane orientation, we realize a configuration where the spin-orbit torque from an injected spin current can unambiguously rotate and switch the Néel vector within the tilted easy plane, with an efficiency comparable to that of classical ferrimagnetic insulators. Our study introduces a new platform for quantitatively characterizing switching and oscillation dynamics in antiferromagnets.

4.
Nano Lett ; 21(16): 7037-7043, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34374550

RESUMO

Unequal transmissions of spin waves along opposite directions provide useful functions for signal processing. So far, the realization of such nonreciprocal spin waves has been mostly limited at a gigahertz frequency in the coherent regime via microwave excitation. Here we show that, in a magnetic bilayer stack with chiral coupling, tunable nonreciprocal propagation can be realized in spin Hall effect-excited incoherent magnons, whose frequencies cover the spectrum from a few gigahertz up to terahertz. The sign of nonreciprocity is controlled by the magnetic orientations of the bilayer in a nonvolatile manner. The nonreciprocity is further verified by measurements of the magnon diffusion length, which is unequal along opposite transmission directions. Our findings enrich the knowledge on magnetic relaxation and diffusive transport and can lead to the design of a passive directional signal isolation device in the diffusive regime.

5.
Adv Mater ; 33(22): e2008555, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33899284

RESUMO

While being electrically insulating, magnetic insulators can behave as good spin conductors by carrying spin current with excited spin waves. So far, magnetic insulators are utilized in multilayer heterostructures for optimizing spin transport or to form magnon spin valves for reaching controls over the spin flow. In these studies, it remains an intensively visited topic as to what the corresponding roles of coherent and incoherent magnons are in the spin transmission. Meanwhile, understanding the underlying mechanism associated with spin transmission in insulators can help to identify new mechanisms that can further improve the spin transport efficiency. Here, by studying spin transport in a magnetic-metal/magnetic-insulator/platinum multilayer, it is demonstrated that coherent magnons can transfer spins efficiently above the magnon bandgap of magnetic insulators. Particularly the standing spin-wave mode can greatly enhance the spin flow by inducing a resonant magnon transmission. Furthermore, within the magnon bandgap, a shutdown of spin transmission due to the blocking of coherent magnons is observed. The demonstrated magnon transmission enhancement and filtering effect provides an efficient method for modulating spin current in magnonic devices.

6.
Science ; 366(6469): 1121-1125, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31780557

RESUMO

The successful implementation of spin-wave devices requires efficient modulation of spin-wave propagation. Using cobalt/nickel multilayer films, we experimentally demonstrate that nanometer-wide magnetic domain walls can be applied to manipulate the phase and magnitude of coherent spin waves in a nonvolatile manner. We further show that a spin wave can, in turn, be used to change the position of magnetic domain walls by means of the spin-transfer torque effect generated from magnon spin current. This mutual interaction between spin waves and magnetic domain walls opens up the possibility of realizing all-magnon spintronic devices, in which one spin-wave signal can be used to control others by reconfiguring magnetic domain structures.

7.
Phys Rev Lett ; 123(10): 107702, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573285

RESUMO

Coupled microwave photon-magnon hybrid systems offer promising applications by harnessing various magnon physics. At present, in order to realize high coupling strength between the two subsystems, bulky ferromagnets with large spin numbers are utilized, which limits their potential applications for scalable quantum information processing. By enhancing single spin coupling strength using lithographically defined superconducting resonators, we report high cooperativities between a resonator mode and a Kittel mode in nanometer thick Permalloy wires. The on-chip, lithographically scalable, and superconducting quantum circuit compatible design provides a direct route towards realizing hybrid quantum systems with nanomagnets, whose coupling strength can be precisely engineered and dynamic properties can be controlled by various mechanisms derived from spintronic studies.

8.
Phys Rev Lett ; 123(4): 047204, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491278

RESUMO

We report broadband microwave absorption spectroscopy of the layered antiferromagnet CrCl_{3}. We observe a rich structure of resonances arising from quasi-two-dimensional antiferromagnetic dynamics. Because of the weak interlayer magnetic coupling in this material, we are able to observe both optical and acoustic branches of antiferromagnetic resonance in the GHz frequency range and a symmetry-protected crossing between them. By breaking rotational symmetry, we further show that strong magnon-magnon coupling with large tunable gaps can be induced between the two resonant modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...